
Dynamic Data Structures—Linked List Editor

Introduction

DDS—Linked List provides a Node data type, with data fields payload and next.

class Node{

 String payload;

 Node next;

}

You may create Node references and instantiate Node objects. They are graphically

represented on the screen. Links from a Node reference to a Node object are

represented as edges. The link attaches to a dot in the reference. Null references are
represented by a reference dot with no attached link.

In this example, the Node reference list has a

link to the Node object containing the payload

123. The next field in the Node object is null.

You can left click on a Node reference or a Node object to select it. They can be

dragged with the mouse to reposition them. Selected references and objects have
action buttons.

Action Semantic meaning

Click Add Node Ref Node list;

Select a Node Reference, click = new() list = new Node(String);

Select a Node Reference, click = .next list = list.next;

Select a Node Reference, click = null list = null;

Select a Node object, click = new() node.next = new Node();

Select a Node object, click = .next node.next = list.next.next;

Select a Node object, click = null node.next = null;

Mouse down on a reference source dot,
drag the reference,
release on a destination reference dot

destination = source;

DDS—Linked List - 2 - Introduction and Tutorial

Tutorial

Load or refresh DDS. Click on the Add Node Ref button. Enter “list” in the dialog.

The Node reference named list will be created and highlighted.

Click = new() to create a new Node object referenced by list. This is the semantic

action for list = new Node(“Hello”); ... Enter the value “Hello” in the dialog box.

A new Node object is created.

Click = new() again to create another Node object that will be referenced by

list.next. Enter the value “World” in the dialog box. A new Node object is appended

to your list.

DDS—Linked List - 3 - Introduction and Tutorial

Drag the Node objects to space them out.

Now we want to create a new Node object that we can link into the list. Here is the

code for the desired actions.

Node temp;

temp = new Node(“There”);

Click Add Node Ref to create the Node reference, then click New to instantiate the

new Node. You will need to drag things around to make it look nice.

Now we want to do two assignments to link the “There” Node object into the list.

temp.next = list.next;

list.next = temp;

Assignment is done by dragging the source dot of a link. If you carefully mouse down

on the dot in the “Hello” Node object, you can drag the value of that link and release it

on the reference dot in the “There” Node object.

DDS—Linked List - 4 - Introduction and Tutorial

A copy of the link will drag. Should the actual Node object drag, you did not mouse

down on the reference dot. The result of the first assignment should look like this.

Now do the same thing to drag the value of the temp reference to the next Node

reference in the “There” Node object.

This should be the result. Note the next reference in the “Hello” Node object has

changed.

Finally, click to select the temp reference, then click = null .

DDS—Linked List - 5 - Introduction and Tutorial

For your final task, click on the list Node reference to select it, then click = null .

Congratulations. You have created garbage. But fear not, all is not lost. On
the right side of the menu bar there is a garbage button. Be considerate and
give it a click to clean up after yourself.

Other Considerations

The = next button is typically used with a Node reference to walk a list. Repeated

applications represent this loop.

while (temp != null){

 temp = temp.next;

}

The editor as configured does not allow actions that would require an equivalent code

expression involving more than two next references from a Node reference, such as

list.next.next . You will see these links as gray dotted lines. Selecting a Node

object that would require such a path to access it will not display any action buttons.

Limitations and Planned Enhancements

This is a prototype. There is no undo facility. It will be added. Work needs to be done on

layout issues of new Node references and objects. To facilitate its usefulness for

student usage, a block language has been prototyped to execute code on linked lists,
and a record and play animation feature is being prototyped.

DDS Information.

DDS—Linked List was designed and implemented by Dr. Robert A. Ravenscroft, Jr. at
Rhode Island College in Providence, RI. You are free to use the program for academic
purposes. The source code is currently not available.

 Copyright 2017, Dr. Robert A. Ravenscroft, Jr.

